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INTRODUCTION
Pump and reservoir system operators are 
constantly faced with the need to make 
regular decisions as to which pumps should 
operate at any given time, determine the 
rate of pumping in order to meet varying 
demands, ensure that reservoirs do not 
drain, and minimise costs. Decision-mak-
ing based on heuristics alone is the trend in 
the operation of many water supply systems 
that serve municipalities. Without doubt, 
this can be improved by employing in tan-
dem, more deterministic tools. In respect of 
ensuring adequate reservoir storage, water 
supply operators in southern Africa are 
legally and socially bound to supply their 
consumers with adequate potable water 
when required. Reneging on existing agree-
ments by allowing reservoirs to drain may 
incur unpleasant legal and related costs to 
the water supplier. Pumping energy costs, 
on the other hand, form an important part 
of the operational cost of water distribution 
systems worldwide (Van Zyl et al 2004). 
They are usually higher than water purifica-
tion costs, particularly in Gauteng Province, 
South Africa, where the consumer is at a 
considerably higher elevation than one of its 
major water sources, namely the Vaal River.

Multidimensional optimisation of the 
variables mentioned above has become 
necessary to maximise system efficiency 
and minimise capital and recurrent costs 
(Ormsbee & Lansey 1994). A small over-
all increase in operational efficiency could 
result in significant cost savings to the water 
industry. Theoretical studies and practical 
implementation of optimal pump  scheduling 

in various types of supply systems sug-
gest that 10 % of the annual expenditure 
on energy and related costs may be saved 
if proper optimisation methods are used 
(Mackle et al 1995). Important features of 
cost are the electricity tariff structure, the 
relative efficiencies of the available pump 
sets, the head through which they pump, 
and marginal treatment costs. Important 
constraints include physical system limita-
tions (reservoir capacities, abstraction limits, 
pumping capacity, treatment works through-
put), physical laws (conservation of mass 
and energy laws) and externally defined 
requirements (consumer demands, poli-
tics) (Ormsbee & Lansey 1994). Additional 
benefits of operational optimisation include 
improved water preservation and quality, 
ensuring compliance with water industry 
regulations, improved system management, 
and benefits for future expansion such as 
automation (Jarrige et al 1991).

The problem of finding the optimal 
operating strategy is far from simple (Van 
Zyl et al 2004):
■ Both consumer demand and the elec-

tricity tariff can vary greatly through a 
typical operating cycle – electricity tariffs 
are varied in an attempt by power sup-
pliers to shed load or distribute the load 
more evenly in order to operate at as high 
a load factor – that is, the ratio of the 
actual energy consumption (kW.hr) to the 
maximum power recorded (demand) over 
a period of time – as possible and mini-
mise electricity costs. As a result, the user 
of energy is encouraged to use off-peak 
energy with a preferential tariff system.Keywords: pumping policy, cost, downhill simplex
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■ Minimum and maximum levels of water 
have to be maintained in the reservoirs 
to ensure reliability of the supply – if 
pumping rates are too low, the reservoirs 
may drain during peak demand, and if 
pumping rates are too high, the reser-
voirs may overflow, resulting in wasted 
electricity costs.

■ The number of pump switches in an oper-
ating cycle has to be limited to avoid excess 
pump operating and maintenance costs.

■ The number of possible operating strat-
egies becomes vast for systems with 
more than a few pumps and reservoirs. 
Added to the above is the fact that the 
hydraulic behaviour of water distribu-
tion systems is highly non-linear, mak-
ing computer modelling a complex and 
time-consuming process.

A logical solution to these challenges is 
to develop a set of rules that would guide 
system operation, maximise efficiency and 
minimise costs for a particular system con-
figuration and demand characteristics. This 
is a complex problem to solve – as indicated 
above – and has been attempted by several 
workers using diverse mathematical tools: 
Lansey and Awumah (1994), Sakarya and 
Mays (2000) – nonlinear programming; 
Zessler and Shamir (1989), McCormick and 
Powell (2003) – dynamic programming; 
Angel et al (1999) – fuzzy logic; and Mackle 
et al (1995), Schwab et al (1996), Van Zyl et 
al (2004) – genetic algorithms.

Drawbacks of many of these models 
include:
■ their inability to determine pumping 

schedules for a system over the short-
term (eg one day) as well as long-term 
(eg one month) durations if system con-
figuration and demand characteristics 
remain unchanged

■ their insistence that reservoirs must fin-
ish their daily cycle at the same level from 
which they started in order that adequate 
volumes are maintained in the reservoir 
for balancing storage purposes

■ their simplification of the optimisation 
problem through assumptions, discretisa-
tion or heuristic rules. Such simplification 
makes it easier for specific optimisation 
methods to determine the optimal solu-
tion, but introduces bias into the solution 
by excluding a larger number of poten-
tially good solutions (Van Zyl et al 2004)

■ their ability to work well for small systems 
but encounter difficulties when dealing 
with larger ones. For example, they may 
become inadequate when there are more 
than two reservoirs in the system or even 
for one-reservoir systems which have 
several different pump combinations or 
complicated system constraints

This paper tackles the pump and reservoir 
operation problem by utilising a multi-
dimensional non-linear tool, the downhill 
simplex method (DSM), to determine an 
optimum pumping policy for a system based 
on demands, pumping rates and reservoir 
volumes (historic or predicted) over short- 
as well as long-term periods. As long as res-
ervoir volumes remain within specified lim-
its, it is assumed that supply and minimum 
required pressures are guaranteed within 
the water reticulation network. Most munici-
pal systems are operated in a manner that 
keeps the reservoirs as full (or as empty) as 
possible all the time at the minimum risk to 
the consumer. This culture is incorporated 
into the DSM using a storage cost func-
tion. In addition, electricity tariffs, pump 
switching costs and storage penalty costs 
are considered when determining a sys-
tem’s optimal pumping policy. A pumping 
policy refers to the set of rules scheduling 
pumping operations at different specified 
reservoir levels (volumes) that will result 
in the minimum operating costs for a given 
period and operating conditions (Ormsbee 
& Lansey 1994; Mackle et al 1995). The 
pump and reservoir system looked at is 
essentially a pumping main from a source of 
water with an unlimited capacity, multiple 
pumps, and supply into storage reservoirs 
at the head of the demand system. In this 
optimisation problem, the objectives are the 
minimisation of pumping costs, penalties for 
violating reservoir limits, storage costs and 
pump switches.

The DSM is a multi-variable, con-
strained, non-linear optimisation tool, 
employed to determine a system’s optimum 
pumping policy. By applying the policy, 
operating costs vis-à-vis pumping, pump 
switching, storage and penalty costs are 
determined over the given period. The 
optimum pumping policy is validated using 
dynamic programming (DP). This is a sim-
pler non-linear method, confined to using 

mass-balance for optimising only the overall 
pump flow rate on sequential time periods 
so as to obtain a near global least cost solu-
tion – it does not generate a pumping policy. 
Since DP is able to determine a near global 
least cost solution over the short- and long-
term durations required, it is employed to 
confirm whether the DSM has located an 
optimal pumping policy whose operating 
costs are close to its least cost solution.

The DSM determines a pumping 
policy using analysed historical or syn-
thetic demands. After analysis, demands are 
predicted. As long as predicted demands 
are statistically consistent with its original 
demand set, a pumping policy generated 
using the DSM remains optimal. If there 
are significant variations between predicted 
and actual demands or changes to system 
components, a new policy will need to be 
recalculated. As is typical of a non-linear 
method, the DSM requires a number of 
runs from different starting points before an 
optimum pumping policy can be achieved, 
as there may otherwise be local optima that 
confine the optimisation. 

The tool presented herein is useful for 
manually operated and semi-automated 
pumping systems, especially in developing 
communities, as it generates formal guide-
lines for pump scheduling that facilitate 
optimal pumping at the least operating 
costs. It is not the intention of the authors to 
present a ‘gold standard’ for system opera-
tion, but a practical and usable solution for 
small pumping system operations.

APPLICATION OF THE DOWNHILL 
SIMPLEX METHOD IN DETERMINING 
A PUMPING POLICY
The DSM (Nelder & Mead 1965; Press et 
al 1992; Koshel 2002) finds the minimum 
value of a function that has more than one 
independent variable. It only requires func-
tion evaluations and not derivatives. It is 
very efficient for constrained coefficient 
optimisation and especially for problems 
that have a small computational burden 
(< 20 dimensions). While it is a robust 
method of optimisation, it is relatively 
slow to converge to local minima for larger 
computations. However, its stability, lack of 
use of derivates and efficiency with small 
computational problems (a pump and reser-
voir system is unlikely to contain 20 pump 
settings) make it very appropriate for the 
pumping policy problem. 

A simplex is an N-dimensional geo-
metrical figure, having N + 1 vertices con-
nected with straight lines. In figure 1, the 
two-dimension simplex is a triangle (N = 
3). In three dimensions it is a tetrahedron. 
The DSM starts from N + 1 points, defining 
an initial simplex. For one initial point P

0
 

on the simplex, the other N points can be 
expressed by:

High Low

Simplex at beginning of step

Reflection

(a)

(b)

(c)

(d)

Reflection and expansion

Contraction

Multiple contraction

Figure 1 The movements of the downhill simplex method
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P
i
 = P

0
 + a

i
 e

i
 (1)

where e
i
 represents N unit vectors, and a

i
 rep-

resents constants that characterise the length 
scale for each vector direction. 

During optimisation, the general idea is 
to keep the minimum solution within the 
simplex while at the same time decreasing the 
volume of the simplex. The DSM essentially 
has four possible steps during each iteration: 
reflection, expansion, contraction in one dimen-
sion and contraction around the low vertex. The 
basis for each step is provided below:
1 The vertices of the initial simplex that have 

the highest (x
h
), second highest (x

s
) and 

lowest (x
l
) function values are determined. 

The centroid x
0
 of all x except x

h
 is also 

determined.
2 x

h
 is reflected through x

0
 to x

r
 (equation 2). 

If f(x
s
) > f(x

r
) > f(x

l
), x

h
 is replaced with x

r
 

and return to step 1 else step 3 or 4.

 x
r 
= (1 + α)x

0
 − αx

h
 (2)

 Where α is the reflection factor (Nelder & 
Mead 1965: α = 1) 

3 If f(x
r
) < f(x

l
), the simplex is expanded (equa-

tion 3) along the x
0
 direction. If expansion 

is successful (ie if f(x
e
) < f(x

l
)), x

h
 is replaced 

by x
e
 and return to step 1.

 x
e 
= γ x

r
 + (1 – γ )x

0
 (3)

 Where γ is the expansion factor (Nelder & 
Mead 1965: γ = 2)

4 If f(x
r
) > f(x

s
), contraction in one dimension 

(equation 4) is made along the x
0
 direction.

 x
c 
= βxj

 + (1 – β)x0
 (4)

 Where β is the contraction in one dimension 
factor (Nelder & Mead 1965: β = 0,5). x

j
 is 

the selection of x
h
 or x

r
, whichever has the 

lowest function value.
  If f(x

j
) > f(x

c
), x

j
 is replaced by x

c
 and 

return to step 1. If not (ie if f(x
j
) < f(x

c
)), the 

simplex is contracted around the low vertex 
(equation 5) about the point x

l
 and return 

to step 1.

 x
i 
= (1 – β

2
) x

l
 + β

2
x

i
 (5)

 Where β
2
 is the full contraction factor 

(Nelder & Mead 1965: β
2
 = 0,5) and x

i
 rep-

resents all the points except x
l
.

Typically, when a point replaces x
l
, the cur-

rent iteration is completed. Next the termina-
tion condition is checked. If the tolerance is 
not met, then the next iteration is started. If 
the tolerance is met or the number of func-
tion evaluations exceed some threshold value 
(unsuccessful termination), the optimisa-
tion is done. It is frequently a good idea to 
restart the algorithm at the point where it 
claims to have found a minimum solution. 
Maintaining a family of diverse (eg table 1) 
yet near optimal solutions as a starting point 
for the evolution may allow rapid identifica-
tion of the optimum pumping policy (Mackle 
et al 1995).

A pumping policy decision is determined 
based on the reservoir volume at the start of 
a time step, the demands expected for that 
time step, and the pump settings during 
the previous time step. Pump settings refer to 
various combinations of pumps and thus, 
pump flow rates. A reservoir change level is 
assigned to each pump setting – it specifies the 
maximum value of the predicted reservoir 

volume for which a pump setting may be 
used. A predicted reservoir volume is defined 
as current reservoir volume minus predicted 
demands. Reservoir don’t change levels are also 
defined for each pump setting in the DSM 
– these change levels prevent pump switch-
ing or changing from one pump setting to 
another in instances where the predicted res-
ervoir volume is only just outside a reservoir 
change level.

 The DSM is initially given a starting 
guess, that is, a simplex with N + 1 reservoir 
change levels all attached to different pump 
settings. It then finds the system’s optimum 
pumping policy (ie each reservoir change level 
and reservoir don’t change level that minimises 
operating costs over a given period).

Figure 2 illustrates the pumping policy 
for an example pump and reservoir system 
having two constant flow pumps with three 
pump settings 3, 2 and 1 (excluding pump 
setting 0) and therefore three reservoir change 
levels X, Y and Z. Variable speed pumps may 
be modelled as a number of discrete settings. 
Each reservoir change level is the maximum 
predicted reservoir volume at which a pump 
setting may be used, for example pump set-
ting 1 is recommended for operation if the 
predicted reservoir volume is between reservoir 
change levels Y and Z. x

i
, x

j
, y

i
, y

j
, z

i
 and z

j
 

represent reservoir do not change levels. 
Incorporating these into the example above, 
pump setting 1 is recommended for opera-
tion between y

i
 and z

j
. Any pair of X:Y:Z val-

ues will therefore represent a starting point 
on a three-dimensional plane. The optimum 
pumping policy will then find the values of 
x

i
, X, x

j
, y

i
, Y, y

j
 z

i
, Z and z

j
 that will result in 

the least system operating costs over a speci-
fied period of operation.

By employing the Darcy-Weisbach for-
mula, total system head H

system
, which is a 

function of flow rate Q, may be mathemati-
cally represented as:

reservoirHelevationHsystemH mHfH  (6)

H
elevation

 is the height of reservoir base above 
pump discharge, H

reservoir
 is height of water in 

reservoir, ΔH
f
 is headloss due to pipe friction, 

and ΔH
m
 is secondary headloss.

kL

28Q
42 gD52 gD

28 LQ
HmHf  (7)

2KQHmHf  (8)

λ is the Darcy friction coefficient, L is pipe 
length, D is pipe diameter, and g is accelera-
tion due to gravity. K

L
 is minor loss coef-

ficient, K, which incorporates the parameters 
above, is approximately constant for an 
installed pumping mains flowing fully.

For each pump setting, a curve relat-
ing pump head H

pump
 to flow rate Q may be 

expressed as:

H
pump

 = f(Q) (9)

Table 1 Diverse spread of starting points for example system in figure 2

Starting 
points

Reservoir change levels (Ml)

X Y Z

Random Random Random Random

Minimum Min Min Min

Even
1N

)(1 MinMax
1N

)(2 MinMax
1N

)(3 MinMax

Maximum Max Max Max

Centre
)1( NN

2Max)( MinMaxN
)1(NN
3)( MinMaxMinMaxN

)1(NN
24 MinMax)( MinMaxN

Reservoir change and don’t change levels

P
u

m
p

se
tt

in
gs

No pump

Pump 1

Pumps 1
and 2

MaxMin xi X xj Yyi yj zi Z zj

Pump 2

Figure 2 Pumping policy for an example pump and reservoir systems
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f(Q) is usually approximated as a cubic or 
square polynomial. 

At a system’s operating point: 

H
pump

 = H
system

 (10)

By substituting equations 6 and 9 into 10, 
and rearranging,

Q = f(V) (11)

For each pump setting, therefore, there 
exists an equation that relates pump flow 
rate Q to reservoir volume V.

Operating cost components
Pump maintenance is an important operat-
ing cost component in providing potable 
water. Although the actual cost of wear on 
the pumps due to pump switching cannot 
be easily quantified, it can be reasonably 
assumed that it increases as the number of 
pump switches increases (Ormsbee & Lansey 
1994). A pump switch is ‘turning on a pump 
that was not operating in the previous period’ 
(Lansey & Awumah 1994). Associated with 
pump switching is the peak demand charge 
(rand/KW). The peak demand charge is the 
charge for the highest power delivered during 
peak periods. The switching-on of pumps 
during peak demand periods increases this 
charge. It makes economic sense therefore 
to also regulate the switching-on and off of 
pumps during peak periods. In generating an 
optimal pumping policy, the DSM uses the 
reservoir don’t change level variable to minimise 
pump switching and consequently, pump 
maintenance and peak demand charges. 

For the active energy charge (cents/
KW.hr), Eskom bills clients peak, standard 
and off-peak rates on several tariff sys-
tems (Eskom 1995). It is to the advantage 
of the water supply authority to choose a 
convenient tariff system that encourages 
increased pumping during off-peak periods 
and decreased pumping during peak peri-
ods. The optimisation of this charge versus 
pumping is not considered in the meth-
odology presented here. Pumping costs, 
C

pumping
(P

s,t
), are therefore simply calculated 

as the energy consumed multiplied by the 
applicable tariff:

costxEpumpingC s,tP )(
1000

pumpg HQ
 (12)

ρ represents density of water (kg/m3), η is 
pump efficiency (%), and E

cost
 is the energy 

tariff (cents/KW.hr).
A typical municipal reservoir comprises 

balancing, operational freeboard, bottom 
and emergency storage volumes. The balanc-
ing storage services the day-to-day func-
tion of balancing supply versus demand. 
To prevent the balancing storage volume 
from encroaching on the other storage 
components, reservoir limits (Maximum, 
Minimum, High and Low) and cost penalties 

are specified in the methodology. Maximum 
and Minimum limits are structural limits 
of the reservoirs that cannot be arbitrar-
ily changed. When the reservoir overflows 
(above Maximum), indirect costs may be 
incurred in water wastage or damages to the 
surrounding area. When the reservoir emp-
ties (below Minimum), costs may be incurred 
from supplementing water from alternative 
sources or settling contractual obligations 
with consumers who have been ill-affected 
by the lack of water. High and Low limits 
represent volume boundaries with adjacent 
storage components – cost penalties may be 
allocated to violation of these boundaries 
and these boundaries may be changed.

Another major operating cost considered 
is that of storing water in the reservoir: this 
is defined using a storage cost function and 
is based on the volume in the reservoir at 
each stage. This cost is primarily related to 
unused capacity in the reservoir. A negative 
cost function will encourage the DSM to 
keep the reservoirs as full as possible and 
vice versa.

Pump switching, storage penalty 
and storage costs are at present hard to 
quantify as each local situation will pos-
sess unique values. For this reason, these 
penalties are hardly accounted as system 
operating costs (Ormsbee & Lansey 1994; 
Lansey & Awumah 1994). The DSM pump-
ing policy will attempt to optimise the 
trade-offs between these costs at each time 
step to determine the least cost between, 
for instance, keeping a pump running or 
switching it off, violating or not violating 
certain reservoir limits, and keeping a reser-
voir as full or as empty as possible. 

VALIDATING THE DOWNHILL 
SIMPLEX PUMPING POLICY USING 
DYNAMIC PROGRAMMING
A simple dynamic programming module is 
employed to validate the optimum pump-
ing policy determined in the DSM. The DP, 
using mass-balance, has the capability to 
determine a near global least cost solution, 
but is unable to generate a pumping policy 
that would facilitate short- as well as long-
term system operation. The DSM can gener-
ate a pumping policy for this purpose, but 
requires verification that the policy gener-
ated will result in the least operating costs, 
similar to those of the DP. If the operating 
costs generated in both procedures are simi-
lar for the same data set, the pumping policy 
is considered optimum. The DP analyses the 
total length of demand data that is avail-
able and, using mass-balance, finds the best 
pump flow rate and therefore least operating 
cost for each time stage. The overall objec-
tive is to minimise operating costs at each 
stage and this may be expressed as:

n

t 1

 C(P
s,t

, V
t
) = 

n

t 1

 [C
penalty

(V
t
) + C

storage
(V

t
) +

C
pumping

(P
s,t

)+ C
pump switching

(P
s,t

, P
s,t+1

)] (13) 

The stage-to-stage transformation equation 
relating variables in stage t to those in stage 
t-1 is:

V
t
 = V

t-1
 + P

r
(P

s,t
, V

t-1
) – D

f,t
 (14)

n is the total number of time stages t, C(P
s,t

, 
V

t
) represents operating cost, C

penalty
(V

t
) rep-

resents reservoir penalty costs, C
storage

(V
t
) 

represents reservoir storage costs, C
pumping

(P
s,t

) 
are pumping costs, C

pump switching
(P

s,t
, P

s,t+1
) are 

pump switching costs, V
t-1

 and V
t
 are reser-

voir volumes at the start and end of stage 
t respectively, P

s,t
 represents pump setting 

during stage t, D
f,t
 is predicted demand 

for stage t, and P
r
( ) calculates pump flow 

rate as a function of reservoir volume 
(equation 11).

PREDICTING CONSUMER DEMANDS
For a pumping policy to be optimal over a 
given period in the present and future, his-
torical and predicted demands must be con-
sidered. For prediction purposes, historical 
demands must be modelled, analysed and 
disaggregated into the various components 
(Wheldon & Thirkettle 1985):

p,tDs,tDf,tD Dnr,t–iD'
q

i
i,q

1

 (15)

The secular trend component D
s,t
 is usually 

due to effects such as population growth in 
the demand area. It is estimated using a least 
squares regression which fits a linear and 
logarithmic curve to the demand data, and 
chooses the best fit. A harmonic analysis is 
employed to calculate periodic trends, D

p,t
. 

This trend models the annual, weekly and 
daily cycles in the demand data. The residual 
component that remains after the secular 
and periodic trends have been removed is 
random in nature, but may not be serially 
independent. A linear autoregressive model is 
then used to represent the serial correlation 
between a particular demand value and those 
of previous time steps. D'

r,t–i
 represents i pre-

viously observed demand values. If t – i < 1, 
then these values are set to zero. φ

i,q
 are 

autoregressive weights and q is the order of 
the linear autoregressive model: this order is 
based on the significance chosen by the user. 
µ

Dn
 is the mean of the independent random 

component and is determined by finding 
the values that result in the best fit between 
measured and predicted data. This fit is 
measured using a Chi-squared (χ2) test. 

THE LIBANON SYSTEM CASE STUDY
The Libanon pump and reservoir system 
is located on the West Rand in Gauteng, 
within the Rand Water supply system 
(Rand Water is Gauteng’s bulk water sup-
ply authority). In order to apply the DSM 
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to the Libanon system, demand data over 
short-term as well as long-term periods were 
required. Since the system was only oper-
ated on a daily basis, short-term (hourly) 

demands were unavailable. Fictional short-
term demands over four weeks (12/04/2004 
– 12/05/2004) were therefore generated. 
Over the long term, actual (daily) demand 

data (15/11/1995 – 12/05/1996) were used. 
The short-term demand set was analysed 
and predicted over one week while the long-
term demand set was analysed and predict-
ed over six months. Pumping decisions are 
made daily at 06:00 and are based on opera-
tors’ experience and the monthly water sup-
ply quotas prescribed by Rand Water. These 
quotas are based on demand predictions 
and/or historical averages for the month in 
question. The operators receive minimal 
assistance during decision-making. There is 
no mechanism for determining when and by 
how much pump settings should change.

From the demand analysis performed 
(table 2) three demand sets (historical four 
weeks, historical six months and predicted 
six months) exhibit a linear secular trend. 
The slope values indicate increasing or 
decreasing demands over time. The predicted 
one-week demand set deviates from the three 
above by exhibiting a logarithmic secular 
trend, which implies a nonlinear increase in 
demand over time. The longer the predicted 
demands are, the more significant the secular 
trend becomes: this is evidenced by the larger 
R2 values for the monthly demand sets. In the 
periodic trend component about four times 
more data points are required for annual, 
weekly or daily cycles to be calculated. As a 
result, annual cycles were not calculated for 
all sets. The monthly demand sets have serial 
correlations of greater than 21,00 % at lags of 
up to four days. Although serial correlations 
appear consistent at lag 1 for the monthly 
demand sets, they decrease rapidly after-
wards because of the first-order autoregres-
sive model used in the calculations.

Table 2 Analysis of hourly and daily demand sets

Classification Description

Hourly demands Daily demands

Historical
(four weeks)

Predicted 
(one week)

Historical
(six months)

Predicted 
(six months)

Data range

Start date and time
End date and time
Number of points
Minimum demand
Maximum demand

12/04/2004 06:00
12/05/2004 06:00

721
15,06 Ml/hr
78,58 Ml/hr

12/05/2004 07:00
19/05/2004 06:00

168
5,53 Ml/hr

79,28 Ml/hr

15/11/95 06:00
12/05/96 06:00

180
19,16 Ml/day
69,68 Ml/day

15/11/95 06:00
12/05/96 06:00

180
37,04 Ml/day
68,86 Ml/day

Secular
Trend
Components

Type
Slope
R2

Linear
0,0516
0,0011

Log
0,9921
0,0014

Linear
-0,0338
0,0478

Linear
-0,0375
0,0895

Periodic 
Trend 
Components

Significance level
Annual cycle
Weekly cycle
Daily cycle

95,00 %
Not calculated

0,1287
0,1062

95,00 %
Not calculated
Not calculated

1,8141

95,00 %
Not calculated

0,0186
Not calculated

95,00 %
Not calculated

0,0186
Not calculated

Serial 
correlations

Coefficients at lag:  0
4

1
0,1524

1
0,2116

1
0,3095

1
0,2153

Autoregressive 
component

Best-fit φ
1,1

0,3420 0,1665 0,5853 0,5658

Best-fit for 
independent 
random component

Standard deviation
χ2 significance

10,1649
0,000004283 %

17,0061
15,86 %

4,4554
99,33 %

4,3906
97,73 %

Table 3 Pumping characteristics

Pump settings Operational pumps Pumping rate Q as function of reservoir volume V (Ml/hr)

1 Pump 1 Q
1
 = +1x10-5V2-0,0365V+36,4749

2 Pump 2 Q
2
 = +2x10-5V2-0,0432V+39,3986

3 Pump 3 Q
3
 = +3x10-5V2-0,0594V+62,0174

4 Pumps 1 and 2 Q
4
 = +1x10-5V2-0,0319V+76,7301

5 Pumps 1 and 3 Q
5
 = -1x10-5V2-0,0464V+88,0152

6 Pumps 2 and 3 Q
6
 = -1x10-5V2-0,0471V+88,5881

7 Pumps 1, 2 and 3 Q
7
 = -1x10-5V2-0,0544V+94,0897
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Figure 3 Historical and predicted hourly demands
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Contrary to the weekly demand sets, 
the best fit parameter φ

1,1
 for the monthly 

demand sets is sufficiently close as are 
the parameters of the normal distribution 
used to generate the independent random 
components.

In summary, the predicted six-month 
daily demand set is more statistically con-
sistent with its base set than the predicted 
one-week hourly set is with its base set. 
The major reason is that the daily demands 
exhibit a more consistent cyclic pattern than 
the hourly demands, which, as mentioned 
earlier, are fictional and chosen haphazardly.

Determining an optimum pumping policy 
for short-term (hourly) pump operation
The historical four-week and predicted one-
week demand sets are shown in figure 3.

From five starting points (random, 
minimum, even, maximum and centre) 
shown in table 1 and the demand analysis 
results (table 2), optimum pumping policies 
were generated for the four-week demand 
set (table 5). By running the optimisation 
from the diverse range of starting points 
mentioned above, a thorough search for an 
optimum solution is enhanced. Pump set-
tings and their flow versus reservoir volume 

equations are shown in table 3. Reservoir 
penalty, pump switching and storage costs 
used here are fictional. Reservoir pen-
alty costs are presented in table 4. R25 is 
charged each time a pump is switched on. 
–R15 per Ml is assigned the storage cost. 
The negative sign in the storage cost forces 
the pumping policy to keep reservoir vol-
umes as full as possible over the specified 
duration while minimising all operating 
costs. A positive cost will perform the 
opposite function. Eskom’s tariffs are shown 
in  figure 4.

For the four-week period (figure 3), the 
recommended optimum pumping policy is 
that generated from starting point ‘random’ 
(figure 5). Sufficiently large spaces between 
each reservoir change level allow each pump 
setting to operate over a reasonable space 
within the reservoir. In consequence, there 
are fewer pump switches and consequently, 
less switching costs than if the reservoir 
change levels were closer to one another. The 
optimum policy (figure 5) recommends that 
pump setting 1 (pump 1 only) be opera-
tional at any time that the reservoir volume 
is between 63,28 Ml and 73,31 Ml and that 
pump setting 7 (pumps 1, 2 and 3) be oper-
ational at any time that the reservoir volume 
is calculated to be below –125,22 Ml. In 
effect, the optimum pumping policy rec-
ommends the singular operation of either 
pumps 1, 2 or 3 (depending on reservoir 
volume) as long as the reservoir volume is 
above the minimum (0,00 Ml) limit.

The optimum pumping policy (figure 
5) is used to simulate the operation of the 
Libanon system using predicted demands for 
Monday, 13 May 2004. Figure 6 depicts pre-
dicted hourly demands, computed optimum 

Table 4 Reservoir limits and penalty costs

Description Value (Ml) Penalty costs (R/Ml)

Maximum 124,35 500,00 (above the Maximum limit)

High 118,14 350,00 (above the High limit)

Low 27,05 500,00 (below the Low limit)

Minimum 00,00 500,00 (below the Minimum limit)

–125,22

–87,43

46,99

73,31
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Figure 5 Recommended optimum pumping policy
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pump flow rates and reservoir volumes over 
each hour for that day. As can be seen, the 
volume in the reservoir was kept as full as 
possible during the entire period by run-
ning at the most, one of the three pumps. As 
long as future demands remain statistically 
and numerically consistent with historic 
demands, the pumping policy will remain 

optimal. It will therefore be unnecessary to 
recalculate this pumping policy unless there 
are structural changes in the system or in 
the statistical properties of the demand. In 
this case, the most efficient pump (pump 1) 
is used nearly the whole day, so that the 
water level does not drop too far towards the 
Low reservoir level.

Determining an optimum pumping policy 
for long-term (daily) pump operation
Daily demands were predicted over six 
months – the same period as the historical 
set (figure 7). Since pumping rates and costs 
were generated for the historical set, this 
section aims to validate the DSM presented 
here. The negative slope in the linear secular 
trend of both sets is caused by the gradual 
decrease in demands typically experienced 
between late spring and late autumn (the 
seasons over which the data were gener-
ated). This slope would likely have been 
eliminated if at least a full year’s worth of 
historical demands were used in the analy-
sis. To aid comparison, the predicted set 
is displaced on the ordinate axis by 50 Ml 
(figure 7). Both sets show similar trends and 
have similar statistical properties (table 2).

The same operating cost components 
and values are employed here as in the 
hourly demand example. For the active ener-
gy tariffs, Eskom charged the Libanon water 
supply authority off-peak (18:00–06:00) 
and standard (06:00–1:00) rates (figure 4) 
only. The operating costs determined while 
optimising from each starting point are pre-
sented in table 6. 

Since it was impossible to ascertain 
actual storage, penalty and pump switch-
ing costs, pumping costs are, in this study, 
the only appropriate index for comparison 
between historical and optimised system 
operation (table 7). Based on pumping alone, 
the pumping policy from starting point 
‘Even’ generates the least cost of R162 400,27 
(table 6). Pumping costs from starting 
points ‘Random’, ‘Minimum’ and ‘Centre’ 
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Figure 6 Predicted hourly demands, optimum pumping rates and reservoir volumes for Monday, 13 May 2004

Table 5 Optimum pumping policies and costs for short-term (hourly) operation

Pump settings
Optimum reservoir change levels (Ml) from each starting point

Random Minimum Even Maximum Centre

1 73,3122 69,7482 70,3699 67,8446 78,0136

2 63,2804 66,2586 67,5414 59,3716 60,0570

3 46,9960 49,6820 50,4850 49,1329 47,7981

4 –0,3081 4,5740 4,9919 25,6863 14,3177

5 –44,8551 –21,7444 –42,3929 6,9293 –66,8654

6 –87,4308 –28,7819 –88,3509 –15,1578 –3,4402

7 –125,2155 –49,2485 –128,7236 –41,3472 –81,8449

Reservoir don’t change levels 0,00 0,00 0,00 ±0,5 0,00

Storage costs (R) (–) 935 137,88 (–) 947 999,93 (–) 952 797,73 (–) 967 980,02 (–) 960 639,43

Maximum limit penalty costs 
(R) [number of times the limit 
was violated]

396,58
[2]

771,75
[1]

1 418,85
[3]

3 059,09
[5]

1 069,54
[2]

High limit penalty costs (R) 
[number of times the limit was 
violated]

22 496,29
[24]

21 369,65
[19]

22 824,56
[20]

33 170,29
[31]

23 607,19
[19]

Low limit penalty costs (R) 0,00 0,00 0,00 0,00 0,00

Minimum limit penalty costs (R) 0,00 0,00 0,00 0,00 0,00

Power consumed (KW) 388 403,70 392 120,03 392 016,68 409 564,04 393 844,95

Pumping costs (R) 841 796,76 850 734,34 849 980,36 908 420,54 863 923,83

Pump switching costs (R) 2 725,00 3 450,00 3 450,00 4 850,00 3 050,00

Total costs (R) 1 802 552,51 1 824 325,67 1 830 471,50 1 917 479,94 1 852 289,99
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are within 1,60 % of this least cost solution, 
which means that along that cost surface, 
there is a least cost optimum with small 
areas of local optima around it. The higher 
pumping cost of R386 308,69  generated 
from starting point ‘Maximum’ may have 
resulted from either premature stoppage 
due to the number of function evaluations 

exceeding the maximum (500 iterations), 
or the functional standard deviation was 
within the specified tolerance (0,0001) even 
though the simplex was still large. The least 
pumping cost of R162 400,27 is 1,95 % less 
than that generated using human opera-
tors (table 7). Unfortunately, the historical 
data generated was incapable of describing 

which pumps were operational at any par-
ticular time and penalty costs, if and when 
applied. The  simple DP module confirmed 
the recommended optimum policy by gen-
erating a near global least pumping cost of 
R161 685,87. This is 2,38 % less than that 
generated using human operators and 0,44 % 
less than that calculated using the DSM.
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Figure 7 Historical and predicted daily demands
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Figure 8 Historical and optimised reservoir volume over six months
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The DSM may be seen to be capable of 
determining pumping policies that are prac-
tical and cost effective. Despite the marginal 
savings in pumping costs in this case study, 
the DSM presents the added advantage of 
recommending formal pumping policies 
that (a) do not require the lengthy training 
of human operators to achieve, and (b) may 
be used to successfully operate a manual or 
semi-automated system.

The higher the storage penalty costs in 
relation to the other operating cost compo-
nents, the less likely the pumping policy 
will violate them. The graphs in figures 8 
and 9 clearly show the sensitivity of the 
DSM and DP to minimising these penalty 
costs while avoiding violating reservoir 
limits on a daily basis over the six-month 
period. The graphs also present a com-
parison between historical and optimised 
pump operation.

Effect of data set length 
on the determination of an 
optimum pumping policy
Since generating data over long periods of 
time becomes cumbersome in the absence 
of a supervisory control and data acquisi-
tion system (SCADA), the effect of data set 
length on the determination of an optimum 
pumping policy was tested. Sixty months of 
predicted daily data for the Libanon system 
were used. From it, three separate data sets, 
each with differing lengths, were extracted 
(table 8). An optimum pumping policy was 
then calculated for each set. Each policy 
was then used to simulate system opera-
tion using the original sixty month demand 

Table 8 Effect of demand data length on the determination of an optimum pumping policy

Demands 
(60 months)

Extract 1
(30 months)

Extract 2
(15 months)

Extract 3 
(71/2 months)

Data points
Start date
End date

1 800
27/08/1999
31/07/2004

900
20/11/2000
07/05/2003

450
03/07/2001
24/09/2002

225
24/10/2001
04/06/2002

Pump settings Reservoir change levels (Ml)

1 
2 
3 
4 
5 
6 
7 

83,75
66,44
21,18

-56,59
-92,66

-129,53
-164,84

86,08
68,39
24,66

-65,22
-96,15

-129,36
-161,73

81,37
63,78
14,12

-43,13
-64,76
-88,69

-111,89

58,84
49,68
26,97

-43,79
-64,63
-88,13

-110,26

Operating costs (R) 3 312 507,00 3 311 890,00 3 311 340,00 3 312 086,00
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Figure 9 Historical and optimised pumping rates over six months

1

8

Table 7 Comparison between historical and optimised daily pumping costs over six months

Description Power consumption (KW.hr) Cost of power for pumping (R) Cost saving (%)

Historical manual operation 129 113,18 165 626,39 Benchmark

Downhill simplex 126 598,28 162 400,27 +1,95

Dynamic programming 126 041,37 161 685,87 +2,38

Table 6 Optimum pumping policy costs for long-term (daily) operation from diverse starting points

Costs Random Minimum Even Maximum Centre

Storage costs (R) (–) 278 076,49 (–) 239 959,96 (–) 241 213,26 (–) 427 046,41 (–) 241 721,07

Maximum limit penalty costs (R)
[No of times the limit was violated]

2 234,35
[2]

0,00 0,00
3 043 020,38

[180]
0,00

High limit penalty costs (R)
[No of times the limit was violated]

10 737,49
[9]

0,00
128,14

[1]
2 521 848,27

[180]
0,00

Low limit penalty costs (R) 0,00 0,00 0,00 0,00 0,00

Minimum limit penalty costs (R) 0,00 0,00 0,00 0,00 0,00

Power consumed (KW) 128 623,55 126 843,38 126 598,28 301 144,91 127 005,21

Pumping costs (R) 164 998,29 162  714,68 162 400,27 386  308,69 162  922,29

Pump switching costs (R) 225,00 250,00 250,00 75,00 300,00

Total costs (R) 456 271,62 402 924,64 403 991,67 6 378 298,75 404 943,36
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set. The results indicate a less than 0,035 % 
difference between the least and other 
operating costs. This implies that the deter-
mination of an optimum pumping policy is 
negligibly influenced by the length of the 
demand data used to calculate it.

CONCLUSIONS
The DSM that generates an optimum 
pumping policy for pump and reservoir 
system operation is presented here. The 
DSM determines an optimum pumping 
policy for short-term as well as long-term 
system operation by matching different 
pump settings to reservoir levels for a par-
ticular system at the least cost. The simple 
DP module, which is unable to generate a 
pumping policy, confirms the DSM pump-
ing policy by optimising the overall pump 
flow rate on sequential time periods to 
obtain a near global least cost solution. In 
tandem, these two methods assist in con-
verging at a near global optimum pumping 
policy. Operating costs consist of pump-
ing, pump switching, storage and reservoir 
penalty costs, and these have been incorpo-
rated into the pumping policy determina-
tion. From the results of the Libanon study 
presented above, the methodology achieved 
about 2 % savings in pumping costs alone 
over a six-month period compared with 
conventional human intervention opera-

tion. Length of base data has been shown 
to have negligible effect on the generation 
of an optimum policy and the methodology 
is significantly sensitive to violating reser-
voir limits.
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